Drawings

I’ve decided to learn how to draw (better late than never). Starting with stuff I can practice alone before I take courses.

HB graphite pencil on bizarrely textured writing paper

Quaternion from two vectors: the final version

I have published a first article about how to build a quaternion from two arbitrary direction vectors that will transform one of the directions into the other. That article was deliberately omitting the special case when the two vectors were facing away from each other, which required special treatment. So I wrote a second article explaining how to quickly pick an orthogonal vector.

Combining the results from the two articles should be straightforward. Here is the resulting, final function:

/* Build a unit quaternion representing the rotation
* from u to v. The input vectors need not be normalised. */
quat quat::fromtwovectors(vec3 u, vec3 v)
{
float norm_u_norm_v = sqrt(dot(u, u) * dot(v, v));
float real_part = norm_u_norm_v + dot(u, v);
vec3 w;
if (real_part < 1.e-6f * norm_u_norm_v)
{
/* If u and v are exactly opposite, rotate 180 degrees
* around an arbitrary orthogonal axis. Axis normalisation
* can happen later, when we normalise the quaternion. */
real_part = 0.0f;
w = abs(u.x) > abs(u.z) ? vec3(-u.y, u.x, 0.f)
: vec3(0.f, -u.z, u.y);
}
else
{
/* Otherwise, build quaternion the standard way. */
w = cross(u, v);
}
return normalize(quat(real_part, w.x, w.y, w.z));
}


If you know you are exclusively dealing with unit vectors, you can replace all occurrences of norm_u_norm_v with the value 1.0f in order to avoid a useless square root.

Le réel danger des romans : la dépendance

Notre société est addictogène : une surconsommation qui tolère voire encourage l’abus ; un individualisme qui prône la performance et l’exigence de bonheur à tout prix ; le rôle de l’image et de l’apparence, l’importance de vivre dans l’immédiateté… Dans cette perspective, rien d’étonnant à ce que pour le seul mois de janvier 2009, l’association e-Enfance ait enregistré plus de 30 appels de parents alarmés, impuissants devant les cas de dépendance aux romans de leurs enfants.

On évoque souvent les dangers des romans sans savoir de quoi on parle : s’agit-il de l’influence des mots, de la violence, ou encore de la difficulté de démêler le réel du virtuel ? Aucune preuve pour répondre à cela. Pourtant, il existe bien un danger réel et omniprésent : la dépendance que cette nouvelle source de plaisir procure. Mais à partir de quand devient-on dépendant ? Et qui cela concerne-t-il ? Le psychiatre Marc Valleur, chef de service de l’hôpital de Marmottan, à Paris, parle de dépendance « quand une personne veut arrêter une conduite sans pouvoir y arriver toute seule ». Et le Dr. William Lowenstein, addictologue et directeur de la clinique Montevideo à Boulogne Billancourt, relève 3 critères de dépendance : « quand on veut, mais qu’on ne peut plus s’arrêter ; quand on sait qu’on est en danger, mais que malgré tout on ne peut s’empêcher et quand l’arrêt produit un mal-être ». C’est à ce moment-là qu’il y a une perte de contrôle et qu’on s’échappe à soi-même. Ainsi, le lecteur pathologique se caractérise par un besoin irrépressible et obsessionnel de lire. Il passe alors très rapidement de l’usage à l’abus jusqu’à la dépendance. Or ce fléau touche en majorité les adolescents et les jeunes adultes, plus particulièrement les adeptes des romans de Marc Lévy.

Ce qui va maintenir le lecteur dans le roman, c’est une volonté de se « réfugier dans le virtuel, pour éviter la réalité » note le Dr. Marc Valleur. Le roman fait office de refuge face à une réalité que les adolescents ne veulent ou ne parviennent plus à affronter. Le Dr. Lowenstein souligne l’urgence à aller consulter un spécialiste pour suivre un traitement psychothérapeutique sans attendre car les conséquences peuvent être dramatiques. L’association S.O.S. Lecteurs publie des chiffres à faire pâlir : « 96,6% des lecteurs et familles sont endettés ; 15,7% d’entre eux divorcent ou se séparent de leur conjoint à cause du roman ; 19,3% de lecteurs ont commis un ou plusieurs délits…». Il est fondamental de prendre en charge la dépendance et il existe des tests en ligne qui permettent de s’auto-évaluer comme celui du Dr. Mark Griffiths, de l’université de Nottingham Trent, pour qui il y a danger à partir de 4 réponses positives à ces questions :

• L’enfant lit-il tous les jours ?
• Lit-il souvent pendant de longues périodes ?
• Il lit pour l’excitation qu’il en retire
• Il est de mauvaise humeur quand il ne peut pas lire
• Il délaisse les activités sociales et sportives
• Il lit au lieu de faire ses devoirs
• Les tentatives de diminuer son temps de lecture sont des échecs… etc.

S’il ne faut pas diaboliser les romans — d’après une étude nord-européenne, environ 1% des lecteurs seraient concernés par l’addiction — il convient néanmoins que les parents restent extrêmement vigilants quant à l’usage qui est fait du roman ; ils doivent également veiller aux signes annonciateurs, tels que les troubles du sommeil, de l’alimentation, le repli social… et suivre les indications qui leur sont données, comme la classification PEGI.

On picking an orthogonal vector (and combing coconuts)

Consider the following problem:

Given a non-zero vector v in 3D space, find a non-zero vector w orthogonal to v (i.e. such that v.w = 0).

At first sight, this seems easy. For every possible v there are an infinite number of orthogonal vectors lying in a plane:

We just need to pick one. But it’s not as trivial as it may seem.

First attempts

The following vector satisfies v.w1 = 0:

Unfortunately that w1 vector can be zero, for instance when v = [0 0 1]. The original problem requires a non-zero vector.

Let’s try another one:

Again, it works most of the time, except in some cases, for instance v = [1 0 0].

How about adding them together? Certainly w1 and w2 cannot be both zero at the same time!

Alas, this still doesn’t work all the time: it fails with v = ![1 0 1].

Should we try harder? Isn’t there a linear combination of these that will work all the time?

Well, no. There isn’t.

You can’t comb a coconut

Sadly, the hairy ball theorem, a consequence of Brouwer’s fixed-point theorem, states that any continuous function f that maps the set of unit vectors to orthogonal vectors takes the value zero somewhere.

Whichever way you look at the sphere of unit vectors, a continuous tangent field will always have a zero point:

Most of the maths operations we usually do (adding, multiplying, taking square roots, etc.) are continuous. Fortunately, we are not limited to them: we can use a simple if() construct to create a discontinuity that will save us.

A very good implementation

Here is my personal implementation of the orthogonal vector problem. It is very good. It has excellent numerical stability. It only does one test. It is short. It is beautiful. I really hope you consider using it.

/* Always works if the input is non-zero.
* Doesn’t require the input to be normalised.
* Doesn’t normalise the output. */
vec3 orthogonal(vec3 v)
{
return abs(v.x) > abs(v.z) ? vec3(-v.y, v.x, 0.0)
: vec3(0.0, -v.z, v.y);
}


Many implementations, such as Ogre3D’s, have additional tests or operations to perform this task, and use epsilons and normalised vectors to avoid singularities.

But our only test is actually enough: if |x|>|z|, it means the largest component in absolute value in v is either x or y. So we build a vector using x and y. Otherwise, the largest component in absolute value is either y or z. So we build a vector using y and z. That way, we ensure that the length of our returned vector never, ever comes near zero.

Whether some given code will cause inefficient branching is often unclear. In our case, it is very likely that the ternary operator will actually be branchless, with some help of the compiler and the hardware.

That said, how about we try to get rid of the ternary operator, just for fun?

Going branchless for fun

Let’s see. We had these two candidate vectors, w1 and w2, which worked almost always except when specific values of v caused them to be zero. And whatever the constant k we may pick, a vector of the form w1 + k w2 will eventually take the value zero for some value of v, too, because of the hairy ball theorem.

Now here comes the trick. Instead of using a constant k, we use a function f(x,y,z). This is what our w vector looks like:

From now I shall assume that v is a unit vector.

What can cause w to be zero, then?

One necessary condition is y = 0. When y ≠ 0 we can chose anything we want for f(x,y,z), it’ll always give us a good orthogonal vector. This restricts the problem to the y = 0 circle, giving us the useful equality x² + z² = 1.

The other condition is x = z*f(x,y,z). So if we manage to build a function f such that f(x,y,z) never equals x/z, we win.

Using x² + z² = 1 we can plot all the possible values for x/z as a function of x. It will show us, for a given x, the values that f cannot take:

The almost vertical slopes you see go to infinity upwards and downwards. As expected, this prevents us from using a continuous function: it would obviously cross one of these walls at some point.

Well, let’s try a non-continuous function, then. What are our options?

• fmod
• floor, ceil, round
• fract

Here is one that I came up with and which works reasonably well:

Look how it nicely avoids x/z:

And finally, our resulting branchless code:

/* Requires the input to be normalised.
* Doesn’t normalise the output. */
vec3 orthogonal(vec3 v)
{
float k = fract(abs(v.x) + 0.5);
return vec3(-v.y, v.x - k * v.z, k * v.y);
}


I find it highly unlikely that this second version will perform better than the branching one. However, I haven’t put much thought into it and maybe someone will come up with a much better solution using the ideas presented here. Have fun!

L’histoire du t-shirt Casimir

Il y a bien longtemps, m’inspirant d’un de mes dessinateurs préférés, j’ai commis ce dessin idiot avec l’idée d’en faire un t-shirt :

Je l’ai donc uploadé sur la plateforme Comboutique. Malheureusement, en l’espace de quelques heures il était supprimé, avec cette justification :

Bonjour,

nous sommes contraint d'effacer votre visuel :

casimir-blue.png

qui est en infraction avec le code de la propriété intellectuelle
(industrielle, commerciale, littéraire et artisitique) ou qui est d'une
résolution insuffisante pour pouvoir être sérigraphié sur un t-shirt.
Nous vous demandons de bien veiller à être absolument certains de
disposer des droits sur un visuel avant de l'uploader sur le serveur
Comboutique.

Autant dire que je me suis senti blessé autant en droit qu’en grammaire. Visiblement ma réponse a fait marrer tout le monde, la voici donc :

From: Sam Hocevar <sam@zoy.org>
Date: Tue, 24 Jan 2006 18:36:00 +0100
To: service.client@comboutique.com
Subject: Re: Comboutique.com - Suppression d'un visuel délictueux

On Tue, Jan 24, 2006, comboutique.com wrote:

>    Bonjour,

Bonjour !

>    nous sommes contraint d'effacer votre visuel :
>
>    casimir-blue.png
>
>    qui est en infraction avec le code de la propriété intellectuelle
>    (industrielle, commerciale, littéraire et artisitique) ou qui est d'une
>    résolution insuffisante pour pouvoir être sérigraphié sur un t-shirt.

Je me demande quelle interprétation vous pouvez bien avoir du code
de la propriété intellectuelle pour décider qu'il m'est impossible de
pasticher Casimir, sachant que l'auteur lui-même d'une oeuvre ne peut
s'opposer au pastiche (article L122-5). Mais je suppose que je ne vous
apprends rien, puisque pendant plusieurs mois début 2005 [1] parmi vos
meilleures ventes figuraient des pastiches de l'oeuvre de feu Roger
Hargreaves, et sans l'exception de pastiche, Chorion PLC (qui gère aussi
les droits d'Agatha Christie et Georges Simenon, autant dire que leur
sens de l'humour doit valoir celui d'une pelleteuse) vous aurait sans
doute taillé un short à la flamme bien moyenâgeuse.

D'ailleurs avec des boutiques comme HOT-COUTURE [2] on peut dire
que vous tenez à être au top de la recherche en droit, puisque vous
vous basez sur la jurisprudence "Esso contre Greenpeace" de 2003 qui
transfère l'exception de parodie au droit des marques (ce qui est quand
même un petit peu fort de café, en tout cas moi je n'aurais pas osé).

Et je suis bien conscient que la dérogation de parodie suppose « un
travail de travestissement ou de subversion de l'oeuvre parodiée, que
le public perçoit comme tel » (jurisprudences "Tintin" et "Caliméro"
entre autres), aussi ai-je fait mon possible pour qu'aucun doute ne soit
possible de la part du public (puisqu'on en parle, je tiens à préciser
que j'ai aussi fait tout mon possible pour ne pas dépasser en coloriant,
ce qui méritait d'être dit).

Si votre service juridique considère que pourvoir Casimir d'un sexe
massif et richement innervé ne constitue pas un acte subversif suffisant
pour établir l'exception de parodie, je suis ouvert à toute suggestion
allant dans ce sens : je pense notamment à une pilosité plus fournie et
une érection démesurée, mais peut-être avez-vous de meilleures idées. Si
vous préférez que Casimir mange son caca et vomisse sur des enfants, je
suis désolé mais vous allez trop loin.

>    Nous vous demandons de bien veiller à être absolument certains de
>    disposer des droits sur un visuel avant de l'uploader sur le serveur
>    Comboutique.

Ben excusez-moi mais c'est quand même vous qui me l'avez effacé avant
que je ne puisse dire quoi que ce soit. Vous n'êtes vraiment pas très
sympa.

Très cordialement,
--
Sam. <http://sam.zoy.org/>

1. http://web.archive.org/web/20050206182446/www.comboutique.com/shop/homepage.php
2. http://www.comboutique.com/hotcouture

Beautiful maths simplification: quaternion from two vectors

In this article I would like to explain the thought process behind the derivation of a widely used formula: finding a quaternion representing the rotation between two 3D vectors. Nothing really new, but hopefully a few ideas could be reused at other times.

Note: the routine presented here is incomplete on purpose. For a version that can be used in production code, see the next article instead, Quaternion from two vectors: the final version.

Naive method

A rotation is best visualised using a rotation axis and an angle. Except in degenerate cases, the rotation axis can be obtained by computing the cross product of the two original vectors:

Then the angle can be obtained using the properties of the cross product and/or the dot product:

Since θ is always between 0 and π, we only care about the dot product. This gives us some obvious code to create the quaternion (omitting corner cases such as θ = 0 for clarity):

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float cos_theta = dot(normalize(u), normalize(v));
float angle = acos(cos_theta);
vec3 w = normalize(cross(u, v));
return quat::fromaxisangle(angle, w);
}


This is naive but it works. Googling for “quaternion from two vectors” shows this forum post and this SO question where this method or a variation thereof is suggested.

Looking under the hood

Let’s have a look at what happens when building the quaternion from an axis and an angle:

This means the code for quat::fromaxisangle would look somewhat like this:

quat quat::fromaxisangle(float angle, vec3 axis)
{
float half_sin = sin(0.5f * angle);
float half_cos = cos(0.5f * angle);
return quat(half_cos,
half_sin * axis.x,
half_sin * axis.y,
half_sin * axis.z);
}


Avoiding trigonometry

If you read Iñigo Quilez’s recent article about avoiding trigonometry you’ll have probably frowned at the fact that we computed θ from cos(θ), then computed sin(θ/2) and cos(θ/2).

Indeed, it happens that there is a much simpler way to do it; the half-angle formulas from precalculus tell us the following:

This allows us to simplify our quaternion creation code:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float cos_theta = dot(normalize(u), normalize(v));
float half_cos = sqrt(0.5f * (1.f + cos_theta));
float half_sin = sqrt(0.5f * (1.f - cos_theta));
vec3 w = normalize(cross(u, v));
return quat(half_cos,
half_sin * w.x,
half_sin * w.y,
half_sin * w.z);
}


This is pretty nice. By using well known trigonometry formulas, we got rid of all trigonometry function calls!

Avoiding square roots

It happens that we can do slightly better. Note that we normalize three vectors: u, v and cross(u, v). That’s three square roots. The thing is, we already know the norm of w through this formula:

And we know sin(θ) from precalculus again:

Also, using the fact that sqrt(a)sqrt(b) = sqrt(ab) lets us perform one less square root.

We can therefore come up with the following performance improvement:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float norm_u_norm_v = sqrt(sqlength(u) * sqlength(v));
float cos_theta = dot(u, v) / norm_u_norm_v;
float half_cos = sqrt(0.5f * (1.f + cos_theta));
float half_sin = sqrt(0.5f * (1.f - cos_theta));
vec3 w = cross(u, v) / (norm_u_norm_v * 2.f * half_sin * half_cos);
return quat(half_cos,
half_sin * w.x,
half_sin * w.y,
half_sin * w.z);
}


Oh wait! We divide by sin(θ/2) to compute w, then we multiply by sin(θ/2) again. This means we don’t even need that variable, and we can simplify even further:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float norm_u_norm_v = sqrt(sqlength(u) * sqlength(v));
float cos_theta = dot(u, v) / norm_u_norm_v;
float half_cos = sqrt(0.5f * (1.f + cos_theta));
vec3 w = cross(u, v) / (norm_u_norm_v * 2.f * half_cos);
return quat(half_cos, w.x, w.y, w.z);
}


This is more or less the code used by the Ogre3D engine in OgreVector3.h, except they perform an additional normalisation step on the final result. This is mathematically useless, but due to numerical stability issues, it is probably safe to do so nonetheless.

This final normalisation step is actually an opportunity to simplify the code even further.

Improving on Ogre3D

We are down to two square roots and four divisions, plus quite a few mul/adds. Depending on the platform that we are running on, it is possible to simplify even further and improve performance. For instance, on many SIMD architectures, normalising a quaternion can be very fast.

This is the code we get if we multiply every component of the quaternion by 2.f * half_cos and let normalize() do the rest of the job:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float norm_u_norm_v = sqrt(sqlength(u) * sqlength(v));
float cos_theta = dot(u, v) / norm_u_norm_v;
float half_cos = sqrt(0.5f * (1.f + cos_theta));
vec3 w = cross(u, v) / norm_u_norm_v;
return normalize(quat(2.f * half_cos * half_cos, w.x, w.y, w.z));
}


Now half_cos only appears in its squared form, and since it comes from a square root, we can simply omit that square root:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float norm_u_norm_v = sqrt(sqlength(u) * sqlength(v));
float cos_theta = dot(u, v) / norm_u_norm_v;
vec3 w = cross(u, v) / norm_u_norm_v;
return normalize(quat(1.f + cos_theta, w.x, w.y, w.z));
}


And using the same reasoning we can multiply every quaternion component by norm_u_norm_v:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float norm_u_norm_v = sqrt(sqlength(u) * sqlength(v));
vec3 w = cross(u, v);
quat q = quat(norm_u_norm_v + dot(u, v), w.x, w.y, w.z);
return normalize(q);
}


We are still doing two square roots and four divisions, some of which are hidden in normalize(), but the code is considerably shorter now.

Final form

If u and v can be enforced to be unit vectors, norm_u_norm_v can be omitted and simply replaced with 1.0f:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
vec3 w = cross(u, v);
quat q = quat(1.f + dot(u, v), w.x, w.y, w.z);
return normalize(q);
}


Isn’t it beautiful, considering the sin(), cos() and acos() ridden mess we started with?

This algorithm can be found all over the Internet, but I do not know who first came up with it. Also, a lot of 3D engines (both publicly available and slightly more private) could benefit from it.

Update (06/01/2014)

In the comments below, Michael Norel provides the following improvement to the non-unit version. Since the values d = dot(u, v) and w = cross(u, v) are computed no matter what, the value sqlength(u) * sqlength(v) could be computed in a different way, *i.e.* d * d + sqlength(w). The following code does at least three multiplications less:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
vec3 w = cross(u, v);
quat q = quat(dot(u, v), w.x, w.y, w.z);
q.w += length(q);
return normalize(q);
}


Also, Marc B. Reynolds notes that, in the unit version, the final normalisation factor is sqrt((1 + dot(u, v))² + sqlength(cross(u, v))) which reduces to sqrt(2 + 2 dot(u, v)) thanks to the sin² + cos² identity. It leads to the following possibly improved version:

quat quat::fromtwovectors(vec3 u, vec3 v)
{
float m = sqrt(2.f + 2.f * dot(u, v));
vec3 w = (1.f / m) * cross(u, v);
return quat(0.5f * m, w.x, w.y, w.z);
}


Fast branchless RGB to HSV conversion in GLSL

Some time ago I devised an original algorithm to convert from RGB to HSV using very few CPU instructions and I wrote a small article about it.

When looking for a GLSL or HLSL conversion routine, I have found implementations of my own algorithm. However they were almost all straightforward, failing to take full advantage of the GPU’s advanced swizzling features.

So here it is, the best version I could come up with:

vec3 rgb2hsv(vec3 c)
{
vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
float d = q.x - min(q.w, q.y);
float e = 1.0e-10;
return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}


Update: Emil Persson suggests using the ternary operator explicitly to force compilers into using a fast conditional move instruction:

    vec4 p = c.g < c.b ? vec4(c.bg, K.wz) : vec4(c.gb, K.xy);
vec4 q = c.r < p.x ? vec4(p.xyw, c.r) : vec4(c.r, p.yzx);


And because a lot of people get it wrong, too, here is the reverse operation in GLSL. It is the algorithm almost everyone uses (or should use):

vec3 hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}


Porting to HLSL is straightforward: replace vec3 and vec4 with float3 and float4, mix with lerp, fract with frac, and clamp(…, 0.0, 1.0) with saturate(…).

A fast RGB to HSV floating point conversion

The operations typically performed to convert from RGB to HSV are the following:

• find the largest RGB component
• find the smallest RGB component
• compute V and S
• select the main circular sector for H
• compute H

Here is, to my knowledge, the most commonly used RGB to HSV routine for floating point, with an extra minor optimisation (adding 1e-20f to divisors to avoid the need to care about divisions by zero):

static void RGB2HSV(float r, float g, float b,
float &h, float &s, float &v)
{
float rgb_max = std::max(r, std::max(g, b));
float rgb_min = std::min(r, std::min(g, b));
float delta = rgb_max - rgb_min;
s = delta / (rgb_max + 1e-20f);
v = rgb_max;
float hue;
if (r == rgb_max)
hue = (g - b) / (delta + 1e-20f);
else if (g == rgb_max)
hue = 2 + (b - r) / (delta + 1e-20f);
else
hue = 4 + (r - g) / (delta + 1e-20f);
if (hue < 0)
hue += 6.f;
h = hue * (1.f / 6.f);
}


Several things seem worth noticing already:

• Most of the complexity comes from the hue calculation.
• Four min/max operations are performed to find rgb_max and rgb_min; however, sorting three values can be done with only 3 comparisons. This is not necessarily problematic because min/max could be wired in an efficient way depending on the CPU.
• Two additional tests are performed to compare r and g to rgb_max; if rgb_max and rgb_min were computed using tests, this is a waste of time to compare them again.
• Adding 6.f to the final hue value only has a 16.6% chance of happening.

The actual hue calculation depends on how r, g, and b are ordered:

But let’s rewrite this in terms of x, y and z, where x is the largest of (r,g,b), z is the smallest of the three, and y is inbetween:

There are a lot of similarities here. We can push it even further, using the fact that x ≥ z and y ≥ z by definition:

That’s actually the same calculation! Only the hue offset K changes. The idea now is the following:

• Sort the triplet (r,g,b) using comparisons
• Build K while sorting the triplet
• Perform the final calculation

Putting the idea into practice gives us the following code:

static void RGB2HSV(float r, float g, float b,
float &h, float &s, float &v)
{
float K = 0.f;
if (g < b)
{
float tmp = g; g = b; b = tmp;
K = -1.f;
}
if (r < g)
{
float tmp = r; r = g; g = tmp;
K = -2.f / 6.f - K;
}
if (g < b)
{
float tmp = g; g = b; b = tmp;
K = -K;
}
float chroma = r - b;
h = fabs(K + (g - b) / (6.f * chroma + 1e-20f));
s = chroma / (r + 1e-20f);
v = r;
}


You can check for yourself that the values for K explicited above are properly generated by that function. There were many other ways to sort (r,g,b) but this specific one lets us do one final optimisation.

We notice that the last swap effectively changes the sign of K and the sign of g - b. Since both are then added and passed to fabs(), the sign reversal can actually be omitted.

That additional trickery gives us this final code:

static void RGB2HSV(float r, float g, float b,
float &h, float &s, float &v)
{
float K = 0.f;
if (g < b)
{
std::swap(g, b);
K = -1.f;
}
if (r < g)
{
std::swap(r, g);
K = -2.f / 6.f - K;
}
float chroma = r - std::min(g, b);
h = fabs(K + (g - b) / (6.f * chroma + 1e-20f));
s = chroma / (r + 1e-20f);
v = r;
}


That’s 2 tests and 1 std::min call instead of the previous 3 tests and 4 std::min/max calls. We really should see some kind of performance gain here.

And as expected, benchmarks indicate a performance increase of 25 to 40 % with a great variety of CPUs, compilers and compiler flags. The following graph (average nanoseconds per conversion) is on a Core i7-2600K CPU, using g++ 4.7.2 with -O3 -ffast-math:

Announce: VsLol 1.0.0.8 released

Version 1.0.0.8 of VsLol has been released. It fixes an unfortunate crash that could be triggered when IntelliSense tried to display an autocompletion menu for a constructor call.